Code
= 1 + 1
x = str(x)
y print(x)
print(y)
2
2
DSAN 5500: Data Structures, Objects, and Algorithms in Python
= 1 + 1
x = str(x)
y print(x)
print(y)
2
2
print(x+1)
print(y+1)
3
--------------------------------------------------------------------------- TypeError Traceback (most recent call last) Cell In[2], line 2 1 print(x+1) ----> 2 print(y+1) TypeError: can only concatenate str (not "int") to str
x
is an int
int
\(\implies\) thing you can do arithmetic addition withy
is a str
str
\(\implies\) thing you cannot do arithmetic addition with+
operator to represent concatenation when applied to two str
objects)str
s are just lists of characters…= "Ceci n'est pas une string"
x print(x)
print(type(x))
print(list(x))
Ceci n'est pas une string
<class 'str'>
['C', 'e', 'c', 'i', ' ', 'n', "'", 'e', 's', 't', ' ', 'p', 'a', 's', ' ', 'u', 'n', 'e', ' ', 's', 't', 'r', 'i', 'n', 'g']
\(\leadsto\) 2. Characters are stored in Python memory as int
values (ASCII encodings)…
= b"Ceci n'est pas une string"
y print(y)
print(type(y))
print(list(y))
b"Ceci n'est pas une string"
<class 'bytes'>
[67, 101, 99, 105, 32, 110, 39, 101, 115, 116, 32, 112, 97, 115, 32, 117, 110, 101, 32, 115, 116, 114, 105, 110, 103]
\(\leadsto\) 3. Each int
value is stored in computer memory as a byte (8 bits \(b_i \in \{0, 1\}\)):
print([format(character, 'b') for character in y])
['1000011', '1100101', '1100011', '1101001', '100000', '1101110', '100111', '1100101', '1110011', '1110100', '100000', '1110000', '1100001', '1110011', '100000', '1110101', '1101110', '1100101', '100000', '1110011', '1110100', '1110010', '1101001', '1101110', '1100111']
datetime.datetime
example)__str__()
and __repr__()
import pandas as pd
= pd.read_csv("assets/swimdata.csv", index_col=0)
swim_df swim_df.head()
name | age | distance | style | time | |
---|---|---|---|---|---|
0 | Abi | 10 | 50m | Back | 41050 |
1 | Abi | 10 | 50m | Back | 43058 |
2 | Abi | 10 | 50m | Back | 42035 |
3 | Abi | 10 | 50m | Back | 43035 |
4 | Abi | 10 | 50m | Back | 39085 |
= swim_df[swim_df['distance'] == "50m"].copy()
short_df 'style', 'time'], ascending=True).groupby('style').head(1).drop(columns="age") short_df.sort_values([
name | distance | style | time | |
---|---|---|---|---|
101 | Calvin | 50m | Back | 37085 |
18 | Abi | 50m | Breast | 45071 |
111 | Calvin | 50m | Fly | 37018 |
65 | Aurora | 50m | Free | 28086 |
= swim_df[swim_df['distance'] == "100m"].copy()
long_df 'style', 'time'], ascending=True).groupby('style').head(1).drop(columns="age") long_df.sort_values([
name | distance | style | time | |
---|---|---|---|---|
72 | Bill | 100m | Back | 65075 |
276 | Tasmin | 100m | Breast | 80059 |
241 | Mike | 100m | Fly | 68038 |
151 | Dave | 100m | Free | 58067 |
class LinkedList:
@property
def root(self):
return self.__root
class LinkedListNode:
@property content
@property next
class BinaryTree:
@property
def root(self):
return self.__root
class BinaryTreeNode:
@property content
@property left
@property right
class QuadTree:
@property
def root(self):
return self.__root
class QuadTreeNode:
@property content
@property nw
@property ne
@property sw
@property se
key
)= []
price_list 'Banana', 10))
price_list.append(('Apple', 2))
price_list.append(('Four Loko', 5))
price_list.append(( price_list
[('Banana', 10), ('Apple', 2), ('Four Loko', 5)]
\[ T(n) = O(1 + \underbrace{\epsilon}_{\mathclap{\text{Collision rate}}} \cdot n) \]
\[ p^{✅} = [T(n) = O(1 + \epsilon n)], q^{✅} = [\epsilon \approx 0],\text{ so } p \wedge q \implies T(n) \overset{✅}{=} O(1). \]
hash(item)
= first letter of item
\[ h(\texttt{x}) = \texttt{x[0]} \]
h('Banana') = 'B'
, h('Monkey') = 'M'
item
hashes to'Banana'
), we compute the hash (B
), look in that slot, and obtain the price for bananas.h('Blueberries') = 'B'
B
slot and see that (Bananas, 10)
is already there!!! Wtf do we do here… don’t panic!LinkedList
that we can use whenever and however we want!LinkedList
? Why not just… another length-26 array, for example?B
(or, if we do, we want to be able to expand/contract our price list to handle new/discontinued items)HashTable
is an Array
that “degenerates into” a LinkedList
(when there are collisions)LinkedList
) was \(O(n)\) for everythihgLinkedList
BinarySearchTree
(BST
)LinkedList
, we’ll be able to take our HashMap
from today and “drop in” the BST
to play the role the LinkedList
is playing right nowBST
with its \(O(\log(n))\) operations, rather than a LinkedList
with its \(O(n)\) operationsHashMap
will go from [\(O(1)\) best-case / \(O(n)\) worst-case] to [\(O(1)\) best-case / \(O(\log_2(n))\) worst-case]! Stay tuned…