# For slides
library(ggplot2)
<- c("#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7")
cbPalette options(ggplot2.discrete.colour = cbPalette)
# Theme generator, for given sizes
<- function(plot_type = "full") {
theme_dsan if (plot_type == "full") {
<- 16
custom_base_size else if (plot_type == "half") {
} <- 22
custom_base_size else if (plot_type == "quarter") {
} <- 28
custom_base_size else {
} # plot_type == "col"
<- 22
custom_base_size
}<- theme_classic(base_size = custom_base_size) +
theme theme(
plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5),
legend.title = element_text(hjust = 0.5),
legend.box.background = element_rect(colour = "black")
)return(theme)
}
::opts_chunk$set(fig.align = "center")
knitr<- 5
g_pointsize <- 1
g_linesize # Technically it should always be linewidth
<- 1
g_linewidth <- 14
g_textsize
<- function() {
remove_legend_title return(theme(
legend.title = element_blank(),
legend.spacing.y = unit(0, "mm")
)) }
Week 11: Fairness vs. Social Welfare
DSAN 5450: Data Ethics and Policy
Spring 2025, Georgetown University
Class Sessions
The Dark Secret Behind Fairness in AI
The Conveniently-Left-Out Detail
- Recall predictive parity:
\[ \mathbb{E}[Y \mid D = 1, A = 1] = \mathbb{E}[Y \mid D = 1, A = 0] \]
- Who decides which \(Y\) to pick?
- Answer: Whoever picks the objective function!
- For profit-maximizing firm: \(\mathbb{E}[D (Y - c)]\)
- For welfare-maximizing society: \(W(u_1(D), \ldots, u_n(D))\)
- Do these align? Sometimes yes, often no (affirmative action!)
Remaining (Challenging) Details
- Who gets included in the SWF?
- People in one community? One state? One country?
- People in the future?
- Animals?