Songs | Jeef | Keef | Total |
---|---|---|---|
0 | 0 | 0 | 0 |
1 | 13 | -2 | 11 |
2 | 18 | -6 | 12 |
3 | 24 | -13 | 11 |
4 | 28 | -20 | 8 |
5 | 30 | -42 | -12 |
DSAN 5450: Data Ethics and Policy
Spring 2025, Georgetown University
Wednesday, April 2, 2025
\[ \DeclareMathOperator*{\argmax}{argmax} \DeclareMathOperator*{\argmin}{argmin} \newcommand{\bigexp}[1]{\exp\mkern-4mu\left[ #1 \right]} \newcommand{\bigexpect}[1]{\mathbb{E}\mkern-4mu \left[ #1 \right]} \newcommand{\definedas}{\overset{\small\text{def}}{=}} \newcommand{\definedalign}{\overset{\phantom{\text{defn}}}{=}} \newcommand{\eqeventual}{\overset{\text{eventually}}{=}} \newcommand{\Err}{\text{Err}} \newcommand{\expect}[1]{\mathbb{E}[#1]} \newcommand{\expectsq}[1]{\mathbb{E}^2[#1]} \newcommand{\fw}[1]{\texttt{#1}} \newcommand{\given}{\mid} \newcommand{\green}[1]{\color{green}{#1}} \newcommand{\heads}{\outcome{heads}} \newcommand{\iid}{\overset{\text{\small{iid}}}{\sim}} \newcommand{\lik}{\mathcal{L}} \newcommand{\loglik}{\ell} \DeclareMathOperator*{\maximize}{maximize} \DeclareMathOperator*{\minimize}{minimize} \newcommand{\mle}{\textsf{ML}} \newcommand{\nimplies}{\;\not\!\!\!\!\implies} \newcommand{\orange}[1]{\color{orange}{#1}} \newcommand{\outcome}[1]{\textsf{#1}} \newcommand{\param}[1]{{\color{purple} #1}} \newcommand{\pgsamplespace}{\{\green{1},\green{2},\green{3},\purp{4},\purp{5},\purp{6}\}} \newcommand{\prob}[1]{P\left( #1 \right)} \newcommand{\purp}[1]{\color{purple}{#1}} \newcommand{\sign}{\text{Sign}} \newcommand{\spacecap}{\; \cap \;} \newcommand{\spacewedge}{\; \wedge \;} \newcommand{\tails}{\outcome{tails}} \newcommand{\Var}[1]{\text{Var}[#1]} \newcommand{\bigVar}[1]{\text{Var}\mkern-4mu \left[ #1 \right]} \]
From Ryan Safner’s History of Economic Thought: Welfare Economics
Rotate Greenie’s box 180° and superimpose onto Bluey’s
Theorem: [Antecedents (Coase Conditions)] \(\Rightarrow\) markets produce Pareto-optimal outcomes
Consequent only true if antecedents hold! Otherwise, proper answer becomes “It depends! Let’s see if data can help us find out!” (Will minimum wage hurt/help blah blah blah… “It depends! Tell me the details!”) (Will new condos blah blah blah yimby nimby…) (Will re-allocating welfare budget from \(X\) to \(Y\) blah blah blah… 👀 HW4)
[Economic inequality] is a social law, something in the nature of man. (Pareto 1896)
We’ve got a [thing] made by men, isn’t that something we should be able to change? (Steinbeck 1939)
Coase Antecedents \(\approx\) equalized power!
Case : Society decides Right to Clean Air \(\prec\) Right to Smoke \(\Rightarrow\) Start at \(E\)
Case Society decides Smoke \(\prec\) Clean Air \(\Rightarrow\) Repeat for \(E' \leadsto X'\)
\[ s^*_{\text{Priv}}, x^*_{\text{Priv}} = \argmax_{s,x}\left[ p_s s - c_s(s, x) \right] \]
\[ f^*_{\text{Priv}} = \argmax_{f}\left[ p_f f - c_f(f, x) \right] \]
\[ s^*_{\text{Yugo}}, f^*_{\text{Yugo}}, x^*_{\text{Yugo}} = \argmax_{s, f, x}\left[ p_s s + p_f f - c_s(s, x) - c_f(f, x) \right] \]
\[ W(\mathbf{u}) = W(u_1, \ldots, u_n) \Rightarrow W(\mathbf{u})(x) = W(u_1(x), \ldots, u_n(x)) \]
\[ W(\underbrace{v_1, \ldots, v_n}_{\text{Values}})(x) \overset{\text{e.g.}}{=} \omega_1\underbrace{v_1(x)}_{\text{Privacy}} + \omega_2\underbrace{v_2(x)}_{\mathclap{\text{Public Health}}} \]
\[ W(\underbrace{s_1, \ldots, s_n}_{\text{Stakeholders}})(x) = \omega_1\underbrace{u_{s_1}(x)}_{\text{Teachers}} + \omega_2\underbrace{u_{s_2}(x)}_{\text{Parents}} + \omega_3\underbrace{u_{s_3}(x)}_{\text{Students}} + \omega_4\underbrace{u_{s_4}(x)}_{\mathclap{\text{Community}}} \]
\[ \mathbb{E}[Y \mid D = 1, A = 1] = \mathbb{E}[Y \mid D = 1, A = 0] \]
\[ W(u_1, \ldots, u_n)(x) = \frac{1}{n}u_1(x) + \cdots + \frac{1}{n}u_n(x) \]
While the rhetoric of “all men [sic] are born equal” is typically taken to be part and parcel of egalitarianism, the effect of ignoring the interpersonal variations can, in fact, be deeply inegalitarian, in hiding the fact that equal consideration for all may demand very unequal treatment in favour of the disadvantaged (Sen 1992)
Songs | Jeef | Keef | Total |
---|---|---|---|
0 | 0 | 0 | 0 |
1 | 13 | -2 | 11 |
2 | 18 | -6 | 12 |
3 | 24 | -13 | 11 |
4 | 28 | -20 | 8 |
5 | 30 | -42 | -12 |
\[ \begin{align*} \max_{m_1,m_2,a_1,a_2}& W(u_1(m_1,a_1),u_2(m_2,a_2)) \\ \text{s.t. }& m_1 + m_2 \leq 14 \\ \phantom{\text{s.t. }} & ~ \, a_1 + a_2 \; \leq 7 \end{align*} \]
DSAN 5450 Week 11: Welfare Weights and Inverse Fairness
Social Welfare Functionals