PPOL 6805 / DSAN 6750: GIS for Spatial Data Science
Fall 2025
Wednesday, November 12, 2025
your_username.github.io/gis-project\[ Y_i = \beta_0 + \beta_1X_{i,1} + \beta_2X_{i,2} + \cdots + \beta_MX_{i,M} + \varepsilon_i \]
Importance of OLS regression: can give us the Best Linear Unbiased Estimator (BLUE)
This is only true if the Gauss-Markov assumptions hold—one of these is that the error terms are uncorrelated:
\[ \text{Cov}[\varepsilon_i, \varepsilon_j] = 0 \; \forall i \neq j \]
| \(N = 477\) | \(\widehat{\beta}\) | SE | \(t\) |
|---|---|---|---|
| Intercept | 35.30 | 2.21 | 15.96 |
| Log GDP per cap | 13.46 | 0.65 | 20.84 |
Moran’s \(I\) for residuals = 0.47(!)
| \(N = 477\) | \(\widehat{\beta}\) | SE | \(t\) |
|---|---|---|---|
| Intercept | 4.70 | 1.66 | 2.80 |
| Log GDP per cap | 1.77 | 0.48 | 3.66 |
| \(\rho\) | 0.87 | 0.02 | 36.7 |
(From the future… your HW4!)
\[ Y_i = \underbrace{\mu_i}_{\text{Non-spatial model}} + \underbrace{\frac{1}{w_{i,\cdot}}\sum_{j \neq i}(Y_j - \mu_j)}_{\text{Spatial Autocorrelation}} + \varepsilon_i \]
\[ Y = \mathbf{X}\beta + \rho \underbrace{\mathbf{W}Y}_{\mathclap{\text{Spatially-lagged }Y}} + \boldsymbol\varepsilon \]
Social Science (McCourt):
Machine Learning (DSAN):
\[ Y = \begin{cases} 2 &\text{if Successful Insurgency} \\ 1 &\text{if Failed Insurgency} \\ 0 &\text{if No Insurgency} \end{cases} \]
spdepterrastars: Same group behind sf.tif files: Dynamically loadedPPOL 6805 Week 12: Tools for Final Projects