An introduction
to Snorkel and
data-centric Al

The how, what, and why of Snorkel Al’s
programmatic data labeling approach

Snorkel

Introduction

Snorkel's journey began at the Stanford Al lab in 2015, where the Snorkel Al founding team
started studying the then largely overlooked problem of labeling and managing the training data
that machine learning models learn from. Most Al approaches work by learning from thousands
or millions of examples of a task that have been labeled with the correct answer or action—
known as “training data.” The not-so-hidden secret of Al is that even today, this training data
requires vast volumes of painstaking manual labeling effort.

We began to see then that this ‘dark ages’ approach to labeling training data by hand would not
scale, especially as state-of-the-art machine learning models became more accessible and
increasingly data-hungry. This consequence is especially the case in verticals like healthcare,
government, finance, etc., where data is incredibly difficult and costly to label due to privacy,
expertise, and frequent relabeling requirements. Indeed, training data has arguably become the
critical bottleneck in Al today.

Convinced that there had to be a better way than hand-labeling, we spent over five years
developing new programmatic approaches to labeling, augmenting, structuring, and managing
this training data called Snorkel. Snorkel was co-developed and deployed with some of the
world’s leading organizations like and represented in

. With Snorkel, you create massive amounts of labeled
training data programmatically in a matter of hours instead of weeks or months of labeling data
manually. Snorkel unlocks a fundamentally new, faster, and more practical way to develop Al.

To apply this revolutionary technology to the complete ML lifecycle, we spun out of the Stanford
Al lab in 2019 to build Snorkel Flow, the data-centric Al application development platform
powered by programmatic data labeling. Snorkel Flow enables data scientists, machine
learning engineers, and subject matter experts to collaboratively create and manage training
data rapidly, train custom ML models, analyze and iterate to drive systematic improvements,
and adapt and deploy Al applications quickly.

In this ebook, we discuss the following topics.

+ How manual labeling blocks enterprises from scaling Al
+ Benefits of adopting data-centric Al approach

+ What is Snorkel?

* How does Snorkel work?

+ Case studies on Snorkel

+ Accelerating Al with Snorkel Flow

https://ai.googleblog.com/2019/03/harnessing-organizational-knowledge-for.html
https://dl.acm.org/doi/abs/10.1145/3329486.3329492
https://arxiv.org/abs/1909.05372
https://www.sciencedirect.com/science/article/pii/S2666389920300192
https://snorkel.ai/resources/research-papers/

The training data bottleneck

We are seeing one of the most significant transformations of enterprise software in our lifetimes
—from software specified by code to a new wave of software systems that learn from data
using Al and ML. These new software systems learn how to carry out nuanced tasks over
complex data that otherwise would have been impossible to specify by manually written code,
by instead learning directly from labeled examples—often called training data. This change
unlocks new applications that were impossible to create before, with less engineering work
needed than ever before—but relying on large volumes of this carefully and custom-curated
training data.

Businesses stand to benefit significantly from this new wave of software systems.
+ Boost operational efficiency and savings with automation.

+ Grow top-line revenue with new products and better customer experiences

+ Capture human knowledge and scale capacity with intelligent applications

» Respond to customer, competitive, or regulatory shifts faster.

This powerful, adaptive enterprise software that goes beyond the capabilities of hand-written
code offers a way to solve business-critical problems faster, with more accuracy, and at a lower
cost. Driven by this promise, enterprises are spending billions of dollars attempting to put Al
and ML to use. IDC predicts that by 2024, the Al market expects to break the $500 billion mark.

Yet few enterprises are realizing value from their Al investments. In a global survey of 3000
business managers and executives, more than half of all respondents affirmed that their
organizations are piloting or deploying Al, have an Al strategy, and understand how Al can
generate business value. Yet, just 1 in 10 companies generates significant financial benefits
with Al. (Source: MIT Sloan Management Review and BCG report)

Just 1 in 10 companies generates significant financial benefits with
Al [today].

Study by MIT Sloan Management Review and Boston Consulting Group

02 The training data bottleneck

https://sloanreview.mit.edu/projects/expanding-ais-impact-with-organizational-learning/

With so much technical progress, and so much of it making it into commoditized and robustly
supported open-source form, why is there so little real enterprise success? The answer all too
often is that many enterprises continue to be bottlenecked by one key ingredient: the large
amounts of labeled data to train these new systems.

Over the years at Stanford Al Lab and now Snorkel Al, we've talked to hundreds of
organizations. We've seen that organizations in most verticals today face challenges around
getting and maintaining training data. These challenges block even organizations with the
world's largest technology budgets from using ML. In a recent poll, we found that 80% of Al
practitioners reported that 1 out of 2 projects are blocked by lack of training data.

More than half of the Al projects are blocked by lack of

training data for 80% of Al practitioners

Snorkel Al survey of 300 practitioners 2021

Most training data created today is manually labeled whether it is done internally or carried out
crowdsourced services. However, organizations face the following key challenges with
manually labeled training data:

1. Time to production is long. Manual labeling is painfully slow. Even with an unlimited labor
force or budget, it can take person-months/years to deliver necessary training data and train
models with production-grade quality.

2. Annotation eats up a significant portion of the budget. Manual labeling is inherently
expensive as it scales linearly at best and is often error-prone. Data science teams rarely have
adequate annotation budgets.

3. Complex data sets need subject matter expertise. Most training data requires highly
trained experts, SMEs, to label, e.g., doctors, legal analysts, network technicians, etc., who
often need to be well-versed in specific organization's goals and datasets. However, available
SMEs are limited, and expensive to label each datapoint manually.

4. Outsourcing labeling is not always an option. Most organizations cannot ship data off-
prem to be labeled, making it impossible to use hand-labeling services. This challenge indicates
that development teams are stuck for months waiting on building training datasets.

03 How Does It Work?

5. Adapting applications requires relabeling. Most organizations have to deal with constant
change in input data and upstream systems and processes and downstream goals and
business objectives—rendering existing training data obsolete. This challenge requires
enterprises to relabel training data constantly.

6. Al Applications are hard to govern. Most organizations need to be able to audit how their
data is being labeled, and consequently, what their Al systems are learning from. Even when
outsourcing labeling is an option, performing essential audits on hand-labeled data is a near
impossibility.

These challenges have resulted in Al practice being model-centric where iterating on the model
is the only lever for performance improvement. Siloed, manual labeling process makes it hard if
not impossible to iterate on data, leaving significant performance on the table. Al application
development needs a practical solution to truly deliver on the promise of Al.

03 How Does It Work?

The future of Al is
data-centric

The Snorkel project started at the Stanford Al Lab in 2015 around two core hypotheses:

1. As models became increasingly powerful and commoditized, success or failure in Al
was going to be all about the training data, and as a result, Al development was going
to shift from being model-centric to data-centric.

2. If Al development was going to be data-centric, tasks like labeling, augmenting, slicing,
cleaning, and monitoring data would all have to be increasingly programmatic for Al to
be as practical and accessible as any other type of software development.

Over half a decade later, and two years since Snorkel Al’'s founding, we see the thesis on data-
centric Al has become so relevant and resonant. Today, an increasing number of organizations
see that data is the arbiter of their Al success or failure, as well as their risk, governance, and
privacy compliance, fairness and equitability, and agility. And, as data moves to the forefront,
so too does the pain of labeling and managing it all by hand. Even the largest organizations in
the world are blocked from using Al when person-months of manual effort are needed every
time a model needs to be built or updated.

At the forefront of this shift from model-centric to data-centric Al, Snorkel Flow, has enabled
some of the world’s largest and most sophisticated organizations to bridge this gap between the
challenges of real-world data and the power of modern Al. Snorkel Flow, a data-centric Al
development platform based on programmatic labeling, is used by Fortune 500
enterprises such as Chubb and BNY Mellon and government agencies to accelerate Al
development by 10-100x speedups, unlock seven-to-eight figure ROI, and scale Al.

Snorkel Flow productionalizes over four years of research carried out at Stanford Al Lab.
Snorkel Research Project was sponsored by Google, Intel, DARPA, and several other leading
organizations and the research was represented in over 50 academic conferences such as
ACL, NeurlPS, Nature and more.

Next, learn about Snorkel’s core concepts, how it works, and how Snorkel Flow changes Al
development workflow from a model-centric to a data-centric approach.

03 The future of Al is data-centric

What Is Snorkel?

Is Snorkel an algorithm? An Al platform? A company? Let’s find out.

Snorkel is a machine learning approach that utilizes programmatic labeling and statistical
modeling to build and iteratively improve training datasets. It is not limited to a specific algorithm
or modeling technique, as many variants of each have been utilized in various iterations of
Snorkel over the years.

Snorkel started as a research project at Stanford Al Lab in 2015, where Snorkel Al’s founding
team set out to explore a higher-level interface to machine learning through training data. This
project was sponsored by Google, Intel, DARPA, and several other leading organizations and
the research has been represented in over fifty academic papers presented at conferences
such as ACL, NeurlPS, Nature and more.

Snorkel Open Source Research Library was developed from 2015 to 2017 as a prototyping
tool. It is a Python library that contains a legacy base class for defining code-based labeling
functions (LFs) and some early algorithms for combining LF votes, rather than a comprehensive
platform supporting the Al development lifecycle.

Snorkel Al was founded in 2019 by the original creators of Snorkel. The company’s mission is
to unlock a better, faster, data-centric way to build Al applications.

Snorkel Flow is a one-of-its-kind data-centric platform for building Al applications, powered by
the Snorkel approach to machine learning and incorporating years of experience by the Snorkel
team in applying it to real-world problems. Today, it is used by numerous Fortune 500
companies to build Al accurate and adaptable applications fast.

With terminology out of the way, let’s dive into how Snorkel works! As a toy running example,
we’ll pretend we’re building a binary classifier for identifying spam emails.

04 What Is Snorkel?

How does Snorkel work?

The Snorkel approach consists of four primary steps, which a user iterates through to
systematically improve the quality of an ML model until it’s ready to deploy:

01 02 03 04

Label & Integrate & Train & Analyze & monitor
build manage deploy Analyze and monitor
Label and build Automatically clean, Train and deploy model performance
training data integrate, and manage state-of-the-art to rapidly identify
programmatically in programmatic training machine learning and correct error
hours without data from all sources. models in-platform modes in the data.
months of hand- or via Python SDK.

labeling.

At first glance, this looks very much like a traditional ML pipeline. But you’ll see as we walk
through each step below in greater detail that:

1. When powered by Snorkel, each step has more flexibility and control than its counterpart in
a traditional pipeline.

2. In a Snorkel application, it is much easier to iterate through these steps repeatedly, allowing
for systematic improvement in hours or days instead of weeks or months.

Let’s dive into each of the four stages of the Snorkel’s approach next.

05 How does Snorkel work?

01. Label and build

With a legacy hand-labeling approach to ML, you may begin by labeling anywhere from
thousands to millions of individual data points one-by-one. Some are easy to label, some are
hard, and some may feel redundant because of how similar they are to ones you’ve already
labeled, but it doesn’t matter—you label them all, one-by-one. For most examples that you
label, you could explain why you’re labeling it that way. But there’s nowhere to incorporate that
reasoning in a legacy approach, so you toss it away and just give a label instead.

With Snorkel, you don’t have to throw your rich domain knowledge away—instead, you capture
it in the form of labeling functions.

Labeling Functions (LFs) are a core abstraction of the Snorkel approach to ML. An LF is simply
an arbitrary function that takes in a data point and either outputs a label or abstains.
Importantly, this interface assumes nothing about how your LF arrives at that label. In practice,
this flexible definition allows for incorporating a huge variety of signals in your training data
creation process (the “kitchen sink” approach)—essentially, if you can think of a programmatic
way to label some subset of your data with a precision that’s better than random, toss it in!

Running Example. As an example, imagine that you are trying to train an email spam detector
for your company’s email server. One approach for creating a training set would be to label tens
or hundreds of thousands of individual emails by hand. Another approach would be to encode
your domain knowledge in labeling functions. For example, you wouldn’t have to look through

”

many data samples to realize that certain words (“viagra”, “wire transfer”, etc.) are strongly

correlated with spam. In contrast, others (“spreadsheet”, “OKR?”, etc.) tend to occur in valid
business-relevant emails. By converting these keywords into labeling functions, you can
potentially label thousands of examples at once, based on your own domain knowledge, but
applied now at a much greater scale.

05 How does Snorkel work?

(o*) Pattern Matching If a phrase like “send money” is in a email

© Boolean Search If unknown_sender AND foreign_source
()

EQ DB Lookup If sender is in our Blacklist.db

=

:E Heuristics If SpellChecker finds 3+ spelling errors
% Legacy System If LegacySytem votes spam

& Third Party Model If TweetSpamDetector votes spam
<O>

N Crowd Labels If Worker #23 votes spam

Labeling Functions (LFs) can come from a huge variety of sources, including writing new
heuristics (rules, patterns, etc.) or wrapping existing knowledge resources (e.g., models,
crowdworker labels, ontologies, etc.). Here are some simple pseudocode examples for the kinds of
LFs that you could write for an email spam detector.

Frequently asked questions

* How do | know what LFs to write?

You may be wondering: “That’s great that | can create a wide variety of LFs—but how do |
know which ones | should write?” The answer comes from focusing on your ultimate goal:
you’re not trying to create a training set—you’re trying to train a high-quality ML model! So
rather than trying to come up with the long list of LFs that you could write, in Snorkel Flow,
you start by creating some minimal initial set of LFs (e.g., one LF per class) and then
iterating. As you'll see in Step 4: Analyze, in Snorkel Flow, you get feedback on where your
model is making mistakes and how that’s correlated with your training data and LF outputs.
As you look at those specific examples and think about how you as a human would label
them, that can guide you to what type of LF you should write next, whether that’s bringing
in an existing resource or writing a new heuristic. If you have a small amount of labeled
data in your training set, Snorkel Flow can also auto-suggest entire LFs or auto-tune
thresholds for LFs whose structure you define.

05 How does Snorkel work?

https://snorkel.ai/how-to-use-snorkel-to-build-ai-applications/#h-analysis

+ Do my LFs need to have human-level precision?

Nope! It’s called “weak supervision” for a reason—Snorkel expects “weak” labels. From a
theoretical standpoint, with enough raw data to label, all Snorkel requires is that your LFs
are better than random on average. But in practice, the more precise your LFs are (and the
higher their coverage on your dataset), the quicker you’ll get to a high-quality training set of
sufficient size for your model, so Snorkel Flow color-codes LFs based on their precision
and coverage to help you identify which ones are good to go, and which may need
additional attention. Your LFs also don’t need to cover the entire dataset—more coverage
means a larger dataset, but we’ll ultimately be training a classifier over a much more
comprehensive feature set than just our relatively small set of LFs.

+ How should | express my LFs?

For many common types of LFs, Snorkel Flow includes a library of no-code templates
where all you need to provide is the nugget of domain knowledge to complete it. For
example, provide the specific keyword that you’re looking for within the first three
sentences of your document and toggle whether or not you want it to be case-sensitive, but
let the template handle compiling that down into an optimized executable function.
However, in some cases, you may want to express a very specific type of signal that
doesn’t have a corresponding template yet or which uses a closed source library that only
you have access to—in that case, you can use the Python SDK to define a custom LF in
the Snorkel Flow integrated notebook.

Precision 100.0% | | Coverage 0.10% | [view Correct] [View Incorrect | X

KEY-oxycodon 8 B

import snorkelflow.client as sf
: i from snorkel.labeling.lf import labeling_function
® Keyword Builder v O from spellchecker3000 import SpellChecker
spell_checker = SpellChecker(”english”)

d | body 2 4 CONTAINS v

icsywordin er”: spell_checker)
def 1f£(x, spell_checker):

oxycodone morphine heroin if spell_checker.count_mistakes(x.body) >= 3:

return “SPAM

else:

N return “UNKNOWN"

+ Add Builder
sf.add_1£(1f)

Then Label: SPAM =

Saved

+ How is writing LFs different from building a rules-based classifier?

Read on, my friend! We answer that precise question in Step 3: Train.

05 How does Snorkel work?

https://snorkel.ai/how-to-use-snorkel-to-build-ai-applications/#h-train

02. Integrate and manage

Once you'’ve got a set of LFs, how do you turn these into training labels? As mentioned in the
previous section, these LFs can be noisy—they may conflict with each other at times, make
correlated errors, not cover all data points, cover certain classes better than others, etc.—and
in most cases, we don’t actually have the ground truth label for our training examples. But we
can use theoretically grounded and empirically proven mathematical methods to identify
optimal ways of combining these noisy supervision sources to create high-quality labels
nonetheless, and now at a much greater scale and with much lower cost than doing so
manually.

The problem we have to solve can be modeled as follows:

« Every data point has some “true” (hidden or latent) label Y —what the world’s foremost
expert on your problem would label it.

« We don’t have that, but we do have a bunch of weak labels A that, in general, are
correlated with the true label.

» We now need a process for inferring the most likely true label for each data point, given
all these noisy labels across our dataset.

“If it includes the phrase

ron

‘send money'...

O “If it has more than three

@ spelling mistakes...”

“If it passes the legacy
rule-based spam filter”

The model that we use to represent this problem is called a label model. It’s important to note
that there are many such models that we could use for this problem. To quote a famous
statistician, “All models are wrong, but some are useful.” Over the years, the Snorkel team has
proposed different models and algorithms that make different assumptions and work best in
different scenarios. Some of our early work is available in papers (e.g., NeurlPS 2016, ICML
2017, AAAL 2019, etc.), but none of these “is Snorkel” any more than the final model
architecture we choose or the LF templates we use. They are each just different choices for a
single component in the framework. Furthermore, we've never stopped innovating here—
Snorkel Flow includes the world’s most comprehensive library of label model
algorithms, with all the above plus additional work from the past couple of years, including
algorithmic, speed, and stability improvements.

05 How does Snorkel work?

https://arxiv.org/abs/1605.07723
https://arxiv.org/abs/1703.00854
https://arxiv.org/abs/1703.00854
https://arxiv.org/abs/1810.02840
https://snorkel.ai/technology/

After an appropriate label model has been selected and applied to our inputs—LF votes per
data point, any ground truth labels that exist in the training set 2, priors about class balance,
etc.—the model’s output is a probabilistic label distribution per data point. In other words, for
each data point in the training set, the model estimates how likely it is that its true label belongs
to each class. We can then use these labels as-is for models that accept label distributions or
keep only the maximum likelihood label for each. This becomes our training set.

Running Example. Returning to our spam detector mentioned above, many of our rules will
have less than perfect accuracy. For example, an LF that looks for prescription drug names as
a sign of spam email may vote incorrectly on emails from a valid customer that sells
prescription drugs. On the other hand, an LF that looks at the historical response rate to emails
sent from this sender may have high confidence that this is, in fact, an email worth responding

to. The key is that we don’t need to negotiate every area of conflict manually. Because the
output of this step is a training label, not a final prediction, we can combine multiple LF votes
(even conflicting ones) into a single confidence-weighted label per data point (e.g., I'm only
78% sure that this email is spam), and train on that.

LF1| —

LF2] —

If LF1 and LF2 vote “SPAM”
and LF3 does not cote “SPAM” LF3| —
and at least one of LF4, LF5,
and LF6 does not vote LF4| —
UNKNOWN, then vote SPAM

0 5| spam
(78% Confident)

LF5) —

GNOGNGEGRGEG

LF6| —

Importantly, once a set of LFs has been developed, creating a new training set—even one with
hundreds of thousands or millions of data points—now takes on the order of seconds or
minutes, not person-weeks or person-months! As a result, the barrier to updating or adapting
your training set to respond to emerging needs, data drift, etc., is significantly lowered, and you
end up being able to iterate on your models’ orders of magnitude more quickly than with legacy
approaches driven by hand-labeling.

05 How does Snorkel work?

https://snorkel.ai/how-to-use-snorkel-to-build-ai-applications/#footnotes

03. Train and deploy

With a large, freshly generated, domain-specific training dataset, the third step is to train a
model appropriate for your data modality and task type. Here we recommend taking advantage
of the fantastic progress that has been made in recent years in accessible, user-friendly, open-
source model libraries. For example, in Snorkel Flow, we provide a model training interface
compatible with Scikit-Learn, XGBoost, Transformers, and Flair, to name a few. You can also
export training labels to train a custom model offline and then upload the predictions via the
SDK.

> dmi ‘
flair XGBoost O learn < Transformers O PyTorch

The natural question to ask at this point is: Why do we need a model if we already have a
bunch of LFs (“rules”) capable of creating training labels (and therefore predictions)? There are
a few good reasons for this:

Predictions from Model
Trained on those LFs

® e ® e
o o
o — o
o ® o o ® o
High Precision, Limited Coverage Similar Precision, 100% Coverage

While your LFs may only label a subset of the data points on the left in this toy 2D problem, a
classifier trained on those data points can learn a “smoother” decision boundary that correctly
classifies similar data points nearby with no LF labels.

05 How does Snorkel work?

https://scikit-learn.org/
https://xgboost.readthedocs.io/
https://huggingface.co/transformers/
https://github.com/flairNLP/flair

1. Generalization: Rules are nice—they’re direct and interpretable. However, they also tend
to be brittle. On the other hand, machine learning models tend to do a much better job of
dealing with minor variations between data points. For example, imagine two emails
identical in every way except for one word being swapped out for a synonym. A rule-based
system looking for that keyword may fail on one and not the other, while an ML model will
almost certainly classify the two similarly. This disparity is because the model can utilize a
more comprehensive feature set. In other words, rather than depending on one keyword to
make its decision, the model can factor in the presence (or absence) of thousands of
keywords all at once.

2. Non-Servable Features: In a rule-based classifier, all rules must be able to be executed at
inference time. With Snorkel, on the other hand, it is possible to create your training set
using features that won’t be available at test time—we call these types of features “non-
servable.” For example, you can use the historical response rate to emails from certain
senders to add weak labels to thousands of emails in your dataset for which you have that
information, and then train a model only on the content of the email (all “servable” features)
so that it can make predictions on new incoming emails as they arrive.

3. Transfer Learning: One reason machine learning (and more specifically, deep learning)
has taken off in recent years is the evolution of representation learning, or learning rich
features for your data automatically from the data rather than feature engineering by hand.
Pre-trained embeddings and models like the ones available in Snorkel Flow bring rich
background information to the table—e.g., for NLP tasks, synonymous words may share no
similarities in their surface forms, while having nearly identical representations in a model.
Utilizing these techniques can significantly improve the ability of a model to generalize to
unseen examples.

05 How does Snorkel work?

04. Analyze and monitor

Once an ML model has been trained, what are your options? First, you’ll want to evaluate its
performance with metrics appropriate for your problem (e.g., accuracy, F1, etc.). If its quality is
sufficient, you can deploy it as part of an Al application and begin to monitor its performance
over time (more on that in the next section). On the other hand, if the quality is insufficient
(which it nearly always is on your first try), you begin a targeted, iterative improvement
process, improving the model by improving the data.

What do we mean by targeted improvement? When a model predicts the wrong label for an
example, there are multiple possibilities why:

1. There’s an issue with the model. For example, you may have a model with insufficient
learning capacity, or your regularization parameter may be set too high.

2. There’s an issue with the data. For example, you may have too many incorrect training
labels, or there may be “blind spots” in your dataset, where examples in your test set have
no similar examples in your train set.

In our experience, too many practitioners assume (implicitly or explicitly) that their dataset is
complete, correct, and untouchable, so they spend all their time iterating on the model. In
reality, most model mistakes are the fault of the data, not the model architecture or
training routine! And if the issue is in the data, then that’s where you should spend your time,
rather than blindly hyperparameter tuning (hoping to land in a better local optimum somewhere)
or collecting more data in general with no attention to where the issues actually lie within it.

Running Example. Returning to our spam detector example, our training set may include
many labeled examples of spam emails trying to sell us prescription drugs or get us to wire
them money. It may not have any labeled examples of social engineering attacks, where the
sender is pretending to be someone we know in order to get us to share sensitive information.
If this new type of attack doesn’t have enough in common with the other types of spam emails

where we have more examples, our model may perform poorly on most of them—not because
we need a different model or more data in general, but because we have a blind spot. One new
LF that covers even just a small portion of this new class of errors could easily be enough
signal to squash that whole bucket, and the analysis page can guide us right to those
examples.

05 How does Snorkel work?

SnorkeJ Analysis

Applications Analysis Tools

Confusion Matrix

Label Distribution

Studio Precision-Recall Curve

Manager Error Correlation

Models

Generalization

Distribution Drift Graph

Class Level Metric

Model-name-1

racy 92.08%

Label Distribution

M Ground truth
c so

-

employment
_mwmuuwn

services

A S S S S S

Distribution Drift Graph

o 90.82%

100%

Confusion Matrix

Error Correlation

LFs matching Model 2

Model

Model-6

v+
0 0
3 0
15 1
0 s

Class Level Metric [

Split | dev v

Suggestions (3) Clearall

Clarity Matrix
Try writing more LFs, and resample

dev set to see new data points
from train set

Visit Studio Page =

Label Distribution

Try tuning on valid set,
oversampling o regularization to
address mismatch for class(es)
['employment’, ‘services']

Visit Models Page —>

Error Correlation

The following LFs are correlated
with model errors. Try refining them
in Studio to get higher precision
KWL-employ

Visit Studio Page —>

Importantly, with the Snorkel approach, you can update a large training set and retrain a
powerful model in minutes, in one sitting, by one individual or small team, rather than over
weeks or months of coordination for large manual labeling jobs. The result is a more rapid,
iterative, and adaptive process for creating and maintaining high-quality Al applications.

05 How does Snorkel work?

Case study: Google

Google built & maintained hundreds models for content classification with Snorkel

Challenge

"' & The Google teams oversaw 100s of content
classifiers, each with its training data set. Developing
a new classifier required significant manual data
labeling effort. The team also struggled to adapt
classifiers when business decisions necessitated
modifying an existing application.

sunglasses

Watch Not Accessory

Google teams spent a considerable amount of time
W and resources labeling and relabeling thousands of
data points manually for months for each classifier.

Neot-Acecessory Sunglasses
Bag

Solution

Google developed topic and product—content classifiers using Snorkel. They wrote labeling
functions that expressed heuristics (based on linked URL, topics, entities) and used
organizational resources such as existing semantic topic models and knowledge

graphs. These labeling functions labeled 684,000 data points in a few minutes for topic
classification and 6.5 million data points for product classification in 30 minutes.

With Snorkel, the Google team built classifiers of comparable quality to ones trained with tens
of thousands of hand-labeled examples. They converted non-servable organizational resources
to servable models for an average 52% performance improvement while generating
millions of data points in tens of minutes.

6 Months 52% 6.5M

of hand-labeling data replaced |performance improvement| Programmatically labeled data
in 30 mins points

06 Case study

Case study: Genentech

Genentech extracted & structured information from clinical trial PDFs with Snorkel Flow

Inclusion / Exclusion Criteria Challenge

Genentech needed to extract valuable information
from Clinical Trial Protocol PDFs. They had tried
multiple approaches, including domain adaptation,
that it did not yield meaningful results.

Instead they wanted to focus on iterating and

Table 1. Sehedule of Assessments augmenting the training data. But it would take 140
subject matter experts a month to label their
training set.

Solution

Using Snorkel Flow, Genentech built applications with NER, entity linking, and classification
models to accurately determine inclusion/exclusion criteria and the Schedule of Assessment
analysis from clinical trial PDFs. The output data was used to harmonize clinical trial
protocols terminology across the organization.

Genentech estimates that Al applications built using Snorkel Flow will increase diverse
populations’ recruitment and reduce trial times, costs, and patient dropout rates. This in turn
will dramatically reduce the drug development costs and increase the number of drugs in
the pipeline leading to better evaluation of treatments, more cures, and treatments for society

1 day 99% 350K

Time to change label schema Accuracy achieved for Programmatically labeled
and relabel all training data NER + entity linking clinical trial PDFs

06 Case study

Accelerate Al with Snorkel
Flow

It’s clear that adopting Snorkel’s data-centric approach can be instrumental to not only
automating the labeling process while keeping human-in-the-loop but also to accelerating Al
development.

But where do you start? Rather than dealing with annotation guides and contracts for
crowdsourced labeling, put Snorkel Flow to use.

With Snorkel Flow, Fortune 500 organizations such as Chubb, BNY Mellon, Genentech, and
more have built accurate and adaptable Al applications fast by putting the power of
programmatic labeling to use.

Beyond realizing Snorkel’s data-centric approach, Snorkel Flow has many other features that
elevate it from a training set or model creation tool to a complete enterprise platform for
building Al applications. Some of those features include:

+ Application studio: Support for multiple data modalities (unstructured text, structured text,
time series, etc.), problem types (NER, info extraction, multi-label classification, etc.), and
custom application graphs combining multiple models, pre-/post-processors, and custom
business logic

+ Programmatic labeling IDE: no-code LF templates, auto-suggest and auto-tuning of LFs,
interactive data visualization, automated management and versioning of LFs, etc.

+ Training data management: advanced label model algorithms, automated parallelization,
and hyperparameter selection, dataset versioning and comparisons, etc.

* Model training and serving: one-click model training or fine-tuning, hyperparameter
search, endpoint creation for mode/application serving, export for serving at scale, etc.

+ Deployment and security: REST API, monitoring services, and managed workers for job
execution; encryption, authentication, and role-based access control (RBAC), managed
SSO0 integration; support for hosted, hybrid, or on-premises deployments, etc.

To see Snorkel Flow in action:

To stay in touch, follow us on , ,

07 Accelerate Al with Snorkel Flow

http://www.snorkel.ai/demo
https://twitter.com/snorkelai
https://www.linkedin.com/company/snorkel-ai
https://www.youtube.com/channel/UC6MQ2p8gZFYdTLEV8cysE6Q

