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Introduction
Snorkel's journey began at the Stanford AI lab in 2015, where the Snorkel AI founding team 
started studying the then largely overlooked problem of labeling and managing the training data 
that machine learning models learn from. Most AI approaches work by learning from thousands 
or millions of examples of a task that have been labeled with the correct answer or action–
known as “training data.” The not-so-hidden secret of AI is that even today, this training data 
requires vast volumes of painstaking manual labeling effort.

We began to see then that this ‘dark ages’ approach to labeling training data by hand would not 
scale, especially as state-of-the-art machine learning models became more accessible and 
increasingly data-hungry. This consequence is especially the case in verticals like healthcare, 
government, finance, etc., where data is incredibly difficult and costly to label due to privacy, 
expertise, and frequent relabeling requirements. Indeed, training data has arguably become the 
critical bottleneck in AI today.

Convinced that there had to be a better way than hand-labeling, we spent over five years 
developing new programmatic approaches to labeling, augmenting, structuring, and managing 
this training data called Snorkel. Snorkel was co-developed and deployed with some of the 
world’s leading organizations like Google, Intel, Apple, Stanford Medicine and represented in 
over fifty peer-reviewed publications. With Snorkel, you create massive amounts of labeled 
training data programmatically in a matter of hours instead of weeks or months of labeling data 
manually. Snorkel unlocks a fundamentally new, faster, and more practical way to develop AI.

To apply this revolutionary technology to the complete ML lifecycle, we spun out of the Stanford 
AI lab in 2019 to build Snorkel Flow, the data-centric AI application development platform 
powered by programmatic data labeling. Snorkel Flow enables data scientists, machine 
learning engineers, and subject matter experts to collaboratively create and manage training 
data rapidly, train custom ML models, analyze and iterate to drive systematic improvements, 
and adapt and deploy AI applications quickly. 

In this ebook, we discuss the following topics.

• How manual labeling blocks enterprises from scaling AI

• Benefits of adopting data-centric AI approach

• What is Snorkel?

• How does Snorkel work?

• Case studies on Snorkel

• Accelerating AI with Snorkel Flow

https://ai.googleblog.com/2019/03/harnessing-organizational-knowledge-for.html
https://dl.acm.org/doi/abs/10.1145/3329486.3329492
https://arxiv.org/abs/1909.05372
https://www.sciencedirect.com/science/article/pii/S2666389920300192
https://snorkel.ai/resources/research-papers/
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We are seeing one of the most significant transformations of enterprise software in our lifetimes
—from software specified by code to a new wave of software systems that learn from data 
using AI and ML. These new software systems learn how to carry out nuanced tasks over 
complex data that otherwise would have been impossible to specify by manually written code, 
by instead learning directly from labeled examples–often called training data. This change 
unlocks new applications that were impossible to create before, with less engineering work 
needed than ever before–but relying on large volumes of this carefully and custom-curated 
training data.

Businesses stand to benefit significantly from this new wave of software systems.

• Boost operational efficiency and savings with automation.

• Grow top-line revenue with new products and better customer experiences

• Capture human knowledge and scale capacity with intelligent applications

• Respond to customer, competitive, or regulatory shifts faster.  

This powerful, adaptive enterprise software that goes beyond the capabilities of hand-written 
code offers a way to solve business-critical problems faster, with more accuracy, and at a lower 
cost. Driven by this promise, enterprises are spending billions of dollars attempting to put AI 
and ML to use. IDC predicts that by 2024, the AI market expects to break the $500 billion mark. 

 
Yet few enterprises are realizing value from their AI investments. In a global survey of 3000 
business managers and executives, more than half of all respondents affirmed that their 
organizations are piloting or deploying AI, have an AI strategy, and understand how AI can 
generate business value. Yet, just 1 in 10 companies generates significant financial benefits 
with AI. (Source: MIT Sloan Management Review and BCG report)

Just 1 in 10 companies generates significant financial benefits with 
AI [today].

Study by MIT Sloan Management Review and Boston Consulting Group

https://sloanreview.mit.edu/projects/expanding-ais-impact-with-organizational-learning/
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More than half of the AI projects are blocked by lack of 
training data for 80% of AI practitioners

Snorkel AI survey of 300 practitioners 2021

With so much technical progress, and so much of it making it into commoditized and robustly 
supported open-source form, why is there so little real enterprise success? The answer all too 
often is that many enterprises continue to be bottlenecked by one key ingredient: the large 
amounts of labeled data to train these new systems.

Over the years at Stanford AI Lab and now Snorkel AI, we've talked to hundreds of 
organizations. We've seen that organizations in most verticals today face challenges around 
getting and maintaining training data. These challenges block even organizations with the 
world's largest technology budgets from using ML. In a recent poll, we found that 80% of AI 
practitioners reported that 1 out of 2 projects are blocked by lack of training data. 

Most training data created today is manually labeled whether it is done internally or carried out 
crowdsourced services. However, organizations face the following key challenges with 
manually labeled training data:

1. Time to production is long. Manual labeling is painfully slow. Even with an unlimited labor 
force or budget, it can take person-months/years to deliver necessary training data and train 
models with production-grade quality. 

2. Annotation eats up a significant portion of the budget. Manual labeling is inherently 
expensive as it scales linearly at best and is often error-prone. Data science teams rarely have 
adequate annotation budgets. 

3. Complex data sets need subject matter expertise. Most training data requires highly 
trained experts, SMEs, to label, e.g., doctors, legal analysts, network technicians, etc., who 
often need to be well-versed in specific organization's goals and datasets. However, available 
SMEs are limited, and expensive to label each datapoint manually. 

4. Outsourcing labeling is not always an option. Most organizations cannot ship data off-
prem to be labeled, making it impossible to use hand-labeling services. This challenge indicates 
that development teams are stuck for months waiting on building training datasets.
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Snorkel AI survey of 300 practitioners 2021

5. Adapting applications requires relabeling. Most organizations have to deal with constant 
change in input data and upstream systems and processes and downstream goals and 
business objectives—rendering existing training data obsolete. This challenge requires 
enterprises to relabel training data constantly. 

6. AI Applications are hard to govern. Most organizations need to be able to audit how their 
data is being labeled, and consequently, what their AI systems are learning from. Even when 
outsourcing labeling is an option, performing essential audits on hand-labeled data is a near 
impossibility. 

These challenges have resulted in AI practice being model-centric where iterating on the model 
is the only lever for performance improvement. Siloed, manual labeling process makes it hard if 
not impossible to iterate on data, leaving significant performance on the table. AI application 
development needs a practical solution to truly deliver on the promise of AI.



The future of AI is 
data-centric

03  The future of AI is data-centric

The Snorkel project started at the Stanford AI Lab in 2015 around two core hypotheses:

1. As models became increasingly powerful and commoditized, success or failure in AI 
was going to be all about the training data, and as a result, AI development was going 
to shift from being model-centric to data-centric.

2. If AI development was going to be data-centric, tasks like labeling, augmenting, slicing, 
cleaning, and monitoring data would all have to be increasingly programmatic for AI to 
be as practical and accessible as any other type of software development.

Over half a decade later, and two years since Snorkel AI’s founding, we see the thesis on data-
centric AI has become so relevant and resonant. Today, an increasing number of organizations 
see that data is the arbiter of their AI success or failure, as well as their risk, governance, and 
privacy compliance, fairness and equitability, and agility.  And, as data moves to the forefront, 
so too does the pain of labeling and managing it all by hand. Even the largest organizations in 
the world are blocked from using AI when person-months of manual effort are needed every 
time a model needs to be built or updated. 

At the forefront of this shift from model-centric to data-centric AI, Snorkel Flow, has enabled 
some of the world’s largest and most sophisticated organizations to bridge this gap between the 
challenges of real-world data and the power of modern AI. Snorkel Flow, a data-centric AI 
development platform based on programmatic labeling, is used by Fortune 500 
enterprises such as Chubb and BNY Mellon and government agencies to accelerate AI 
development by 10-100x speedups, unlock seven-to-eight figure ROI, and scale AI. 

Snorkel Flow productionalizes over four years of research carried out at Stanford AI Lab. 
Snorkel Research Project was sponsored by Google, Intel, DARPA, and several other leading 
organizations and the research was represented in over 50 academic conferences such as 
ACL, NeurIPS, Nature and more. 

Next, learn about Snorkel’s core concepts, how it works, and how Snorkel Flow changes AI 
development workflow from a model-centric to a data-centric approach.
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Is Snorkel an algorithm? An AI platform? A company? Let’s find out.

Snorkel is a machine learning approach that utilizes programmatic labeling and statistical 
modeling to build and iteratively improve training datasets. It is not limited to a specific algorithm 
or modeling technique, as many variants of each have been utilized in various iterations of 
Snorkel over the years.

Snorkel started as a research project at Stanford AI Lab in 2015, where Snorkel AI’s founding 
team set out to explore a higher-level interface to machine learning through training data. This 
project was sponsored by Google, Intel, DARPA, and several other leading organizations and 
the research has been represented in over fifty academic papers presented at conferences 
such as ACL, NeurIPS, Nature and more. 

Snorkel Open Source Research Library was developed from 2015 to 2017 as a prototyping 
tool. It is a Python library that contains a legacy base class for defining code-based labeling 
functions (LFs) and some early algorithms for combining LF votes, rather than a comprehensive 
platform supporting the AI development lifecycle.

Snorkel AI was founded in 2019 by the original creators of Snorkel. The company’s mission is 
to unlock a better, faster, data-centric way to build AI applications. 

Snorkel Flow is a one-of-its-kind data-centric platform for building AI applications, powered by 
the Snorkel approach to machine learning and incorporating years of experience by the Snorkel 
team in applying it to real-world problems. Today, it is used by numerous Fortune 500 
companies to build AI accurate and adaptable applications fast. 

With terminology out of the way, let’s dive into how Snorkel works! As a toy running example, 
we’ll pretend we’re building a binary classifier for identifying spam emails.
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The Snorkel approach consists of four primary steps, which a user iterates through to 
systematically improve the quality of an ML model until it’s ready to deploy:

At first glance, this looks very much like a traditional ML pipeline. But you’ll see as we walk 
through each step below in greater detail that:

1. When powered by Snorkel, each step has more flexibility and control than its counterpart in 
a traditional pipeline.

2. In a Snorkel application, it is much easier to iterate through these steps repeatedly, allowing 
for systematic improvement in hours or days instead of weeks or months.

Let’s dive into each of the four stages of the Snorkel’s approach next.

01

Label & 
build
Label and build 
training data 
programmatically in 
hours without 
months of hand-
labeling.

02

Integrate & 
manage
Automatically clean, 
integrate, and manage 
programmatic training 
data from all sources.

03

Train & 
deploy
Train and deploy 
state-of-the-art 
machine learning 
models in-platform 
or via Python SDK.

04

Analyze & monitor
Analyze and monitor 
model performance 
to rapidly identify 
and correct error 
modes in the data.



01. Label and build

With a legacy hand-labeling approach to ML, you may begin by labeling anywhere from 
thousands to millions of individual data points one-by-one. Some are easy to label, some are 
hard, and some may feel redundant because of how similar they are to ones you’ve already 
labeled, but it doesn’t matter—you label them all, one-by-one. For most examples that you 
label, you could explain why you’re labeling it that way. But there’s nowhere to incorporate that 
reasoning in a legacy approach, so you toss it away and just give a label instead.  

With Snorkel, you don’t have to throw your rich domain knowledge away—instead, you capture 
it in the form of labeling functions. 

Labeling Functions (LFs) are a core abstraction of the Snorkel approach to ML. An LF is simply 
an arbitrary function that takes in a data point and either outputs a label or abstains. 
Importantly, this interface assumes nothing about how your LF arrives at that label. In practice, 
this flexible definition allows for incorporating a huge variety of signals in your training data 
creation process (the “kitchen sink” approach)—essentially, if you can think of a programmatic 
way to label some subset of your data with a precision that’s better than random, toss it in!

Running Example. As an example, imagine that you are trying to train an email spam detector 
for your company’s email server. One approach for creating a training set would be to label tens 
or hundreds of thousands of individual emails by hand. Another approach would be to encode 
your domain knowledge in labeling functions. For example, you wouldn’t have to look through 
many data samples to realize that certain words (“viagra”, “wire transfer”, etc.) are strongly 
correlated with spam. In contrast, others (“spreadsheet”, “OKR”, etc.) tend to occur in valid 
business-relevant emails. By converting these keywords into labeling functions, you can 
potentially label thousands of examples at once, based on your own domain knowledge, but 
applied now at a much greater scale.
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Labeling Functions (LFs) can come from a huge variety of sources, including writing new 
heuristics (rules, patterns, etc.) or wrapping existing knowledge resources (e.g., models, 
crowdworker labels, ontologies, etc.). Here are some simple pseudocode examples for the kinds of 
LFs that you could write for an email spam detector.

• How do I know what LFs to write?  
 
You may be wondering: “That’s great that I can create a wide variety of LFs—but how do I 
know which ones I should write?” The answer comes from focusing on your ultimate goal: 
you’re not trying to create a training set—you’re trying to train a high-quality ML model! So 
rather than trying to come up with the long list of LFs that you could write, in Snorkel Flow, 
you start by creating some minimal initial set of LFs (e.g., one LF per class) and then 
iterating. As you’ll see in Step 4: Analyze, in Snorkel Flow, you get feedback on where your 
model is making mistakes and how that’s correlated with your training data and LF outputs. 
As you look at those specific examples and think about how you as a human would label 
them, that can guide you to what type of LF you should write next, whether that’s bringing 
in an existing resource or writing a new heuristic. If you have a small amount of labeled 
data in your training set, Snorkel Flow can also auto-suggest entire LFs or auto-tune 
thresholds for LFs whose structure you define.

Frequently asked questions
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https://snorkel.ai/how-to-use-snorkel-to-build-ai-applications/#h-analysis


• Do my LFs need to have human-level precision? 
 
Nope! It’s called “weak supervision” for a reason—Snorkel expects “weak” labels. From a 
theoretical standpoint, with enough raw data to label, all Snorkel requires is that your LFs 
are better than random on average. But in practice, the more precise your LFs are (and the 
higher their coverage on your dataset), the quicker you’ll get to a high-quality training set of 
sufficient size for your model, so Snorkel Flow color-codes LFs based on their precision 
and coverage to help you identify which ones are good to go, and which may need 
additional attention. Your LFs also don’t need to cover the entire dataset—more coverage 
means a larger dataset, but we’ll ultimately be training a classifier over a much more 
comprehensive feature set than just our relatively small set of LFs.

• How should I express my LFs?  
 
For many common types of LFs, Snorkel Flow includes a library of no-code templates 
where all you need to provide is the nugget of domain knowledge to complete it. For 
example, provide the specific keyword that you’re looking for within the first three 
sentences of your document and toggle whether or not you want it to be case-sensitive, but 
let the template handle compiling that down into an optimized executable function. 
However, in some cases, you may want to express a very specific type of signal that 
doesn’t have a corresponding template yet or which uses a closed source library that only 
you have access to—in that case, you can use the Python SDK to define a custom LF in 
the Snorkel Flow integrated notebook.

• How is writing LFs different from building a rules-based classifier? 
 
Read on, my friend! We answer that precise question in Step 3: Train.
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02. Integrate and manage

Once you’ve got a set of LFs, how do you turn these into training labels? As mentioned in the 
previous section, these LFs can be noisy—they may conflict with each other at times, make 
correlated errors, not cover all data points, cover certain classes better than others, etc.—and 
in most cases, we don’t actually have the ground truth label for our training examples. But we 
can use theoretically grounded and empirically proven mathematical methods to identify 
optimal ways of combining these noisy supervision sources to create high-quality labels 
nonetheless, and now at a much greater scale and with much lower cost than doing so 
manually. 

The problem we have to solve can be modeled as follows:

• Every data point has some “true” (hidden or latent) label Y—what the world’s foremost 
expert on your problem would label it.

• We don’t have that, but we do have a bunch of weak labels λ that, in general, are 
correlated with the true label.

• We now need a process for inferring the most likely true label for each data point, given 
all these noisy labels across our dataset.

The model that we use to represent this problem is called a label model. It’s important to note 
that there are many such models that we could use for this problem. To quote a famous 
statistician, “All models are wrong, but some are useful.” Over the years, the Snorkel team has 
proposed different models and algorithms that make different assumptions and work best in 
different scenarios. Some of our early work is available in papers (e.g., NeurIPS 2016, ICML 
2017, AAAI 2019, etc.), but none of these “is Snorkel” any more than the final model 
architecture we choose or the LF templates we use. They are each just different choices for a 
single component in the framework. Furthermore, we’ve never stopped innovating here—
Snorkel Flow includes the world’s most comprehensive library of label model 
algorithms, with all the above plus additional work from the past couple of years, including 
algorithmic, speed, and stability improvements.
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https://arxiv.org/abs/1605.07723
https://arxiv.org/abs/1703.00854
https://arxiv.org/abs/1703.00854
https://arxiv.org/abs/1810.02840
https://snorkel.ai/technology/


After an appropriate label model has been selected and applied to our inputs—LF votes per 
data point, any ground truth labels that exist in the training set 2, priors about class balance, 
etc.—the model’s output is a probabilistic label distribution per data point. In other words, for 
each data point in the training set, the model estimates how likely it is that its true label belongs 
to each class. We can then use these labels as-is for models that accept label distributions or 
keep only the maximum likelihood label for each. This becomes our training set.

Importantly, once a set of LFs has been developed, creating a new training set—even one with 
hundreds of thousands or millions of data points—now takes on the order of seconds or 
minutes, not person-weeks or person-months! As a result, the barrier to updating or adapting 
your training set to respond to emerging needs, data drift, etc., is significantly lowered, and you 
end up being able to iterate on your models’ orders of magnitude more quickly than with legacy 
approaches driven by hand-labeling.

Running Example. Returning to our spam detector mentioned above, many of our rules will 
have less than perfect accuracy. For example, an LF that looks for prescription drug names as 
a sign of spam email may vote incorrectly on emails from a valid customer that sells 
prescription drugs. On the other hand, an LF that looks at the historical response rate to emails 
sent from this sender may have high confidence that this is, in fact, an email worth responding 
to. The key is that we don’t need to negotiate every area of conflict manually. Because the 
output of this step is a training label, not a final prediction, we can combine multiple LF votes 
(even conflicting ones) into a single confidence-weighted label per data point (e.g., I’m only 
78% sure that this email is spam), and train on that.
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The natural question to ask at this point is: Why do we need a model if we already have a 
bunch of LFs (“rules”) capable of creating training labels (and therefore predictions)? There are 
a few good reasons for this:

With a large, freshly generated, domain-specific training dataset, the third step is to train a 
model appropriate for your data modality and task type. Here we recommend taking advantage 
of the fantastic progress that has been made in recent years in accessible, user-friendly, open-
source model libraries. For example, in Snorkel Flow, we provide a model training interface 
compatible with Scikit-Learn, XGBoost, Transformers, and Flair, to name a few. You can also 
export training labels to train a custom model offline and then upload the predictions via the 
SDK.

While your LFs may only label a subset of the data points on the left in this toy 2D problem, a 
classifier trained on those data points can learn a “smoother” decision boundary that correctly 
classifies similar data points nearby with no LF labels.

03. Train and deploy
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https://scikit-learn.org/
https://xgboost.readthedocs.io/
https://huggingface.co/transformers/
https://github.com/flairNLP/flair


1. Generalization: Rules are nice—they’re direct and interpretable. However, they also tend 
to be brittle. On the other hand, machine learning models tend to do a much better job of 
dealing with minor variations between data points. For example, imagine two emails 
identical in every way except for one word being swapped out for a synonym. A rule-based 
system looking for that keyword may fail on one and not the other, while an ML model will 
almost certainly classify the two similarly. This disparity is because the model can utilize a 
more comprehensive feature set. In other words, rather than depending on one keyword to 
make its decision, the model can factor in the presence (or absence) of thousands of 
keywords all at once. 

2. Non-Servable Features: In a rule-based classifier, all rules must be able to be executed at 
inference time. With Snorkel, on the other hand, it is possible to create your training set 
using features that won’t be available at test time—we call these types of features “non-
servable.” For example, you can use the historical response rate to emails from certain 
senders to add weak labels to thousands of emails in your dataset for which you have that 
information, and then train a model only on the content of the email (all “servable” features) 
so that it can make predictions on new incoming emails as they arrive. 

3. Transfer Learning: One reason machine learning (and more specifically, deep learning) 
has taken off in recent years is the evolution of representation learning, or learning rich 
features for your data automatically from the data rather than feature engineering by hand. 
Pre-trained embeddings and models like the ones available in Snorkel Flow bring rich 
background information to the table—e.g., for NLP tasks, synonymous words may share no 
similarities in their surface forms, while having nearly identical representations in a model. 
Utilizing these techniques can significantly improve the ability of a model to generalize to 
unseen examples.
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04. Analyze and monitor

Once an ML model has been trained, what are your options? First, you’ll want to evaluate its 
performance with metrics appropriate for your problem (e.g., accuracy, F1, etc.). If its quality is 
sufficient, you can deploy it as part of an AI application and begin to monitor its performance 
over time (more on that in the next section). On the other hand, if the quality is insufficient 
(which it nearly always is on your first try), you begin a targeted, iterative improvement 
process, improving the model by improving the data.

What do we mean by targeted improvement? When a model predicts the wrong label for an 
example, there are multiple possibilities why: 

1. There’s an issue with the model. For example, you may have a model with insufficient 
learning capacity, or your regularization parameter may be set too high.

2. There’s an issue with the data. For example, you may have too many incorrect training 
labels, or there may be “blind spots” in your dataset, where examples in your test set have 
no similar examples in your train set.  

In our experience, too many practitioners assume (implicitly or explicitly) that their dataset is 
complete, correct, and untouchable, so they spend all their time iterating on the model. In 
reality, most model mistakes are the fault of the data, not the model architecture or 
training routine! And if the issue is in the data, then that’s where you should spend your time, 
rather than blindly hyperparameter tuning (hoping to land in a better local optimum somewhere) 
or collecting more data in general with no attention to where the issues actually lie within it.

Running Example. Returning to our spam detector example, our training set may include 
many labeled examples of spam emails trying to sell us prescription drugs or get us to wire 
them money. It may not have any labeled examples of social engineering attacks, where the 
sender is pretending to be someone we know in order to get us to share sensitive information. 
If this new type of attack doesn’t have enough in common with the other types of spam emails 
where we have more examples, our model may perform poorly on most of them—not because 
we need a different model or more data in general, but because we have a blind spot. One new 
LF that covers even just a small portion of this new class of errors could easily be enough 
signal to squash that whole bucket, and the analysis page can guide us right to those 
examples.
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Importantly, with the Snorkel approach, you can update a large training set and retrain a 
powerful model in minutes, in one sitting, by one individual or small team, rather than over 
weeks or months of coordination for large manual labeling jobs. The result is a more rapid, 
iterative, and adaptive process for creating and maintaining high-quality AI applications.
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Case study: Google

Google built & maintained hundreds models for content classification with Snorkel

Challenge

The Google teams oversaw 100s of content 
classifiers, each with its training data set. Developing 
a new classifier required significant manual data 
labeling effort. The team also struggled to adapt 
classifiers when business decisions necessitated 
modifying an existing application.

Google teams spent a considerable amount of time 
and resources labeling and relabeling thousands of 
data points manually for months for each classifier. 

Solution

Google developed topic and product—content classifiers using Snorkel. They wrote labeling 
functions that expressed heuristics (based on linked URL, topics, entities) and used 
organizational resources such as existing semantic topic models and knowledge 
graphs. These labeling functions labeled 684,000 data points in a few minutes for topic 
classification and 6.5 million data points for product classification in 30 minutes.

With Snorkel, the Google team built classifiers of comparable quality to ones trained with tens 
of thousands of hand-labeled examples. They converted non-servable organizational resources 
to servable models for an average 52% performance improvement while generating 
millions of data points in tens of minutes.

6 Months
of hand-labeling data replaced 

in 30 mins

52%
performance improvement

6.5M
Programmatically labeled data 

points
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Case study: Genentech

Genentech extracted & structured information from clinical trial PDFs with Snorkel Flow

Challenge

Genentech needed to extract valuable information 
from Clinical Trial Protocol PDFs. They had tried 
multiple approaches, including domain adaptation, 
that it did not yield meaningful results. 

Instead they wanted to focus on iterating and 
augmenting the training data. But it would take 140 
subject matter experts a month to label their 
training set.

Solution

Using Snorkel Flow, Genentech built applications with NER, entity linking, and classification 
models to accurately determine inclusion/exclusion criteria and the Schedule of Assessment 
analysis from clinical trial PDFs. The output data was used to harmonize clinical trial 
protocols terminology across the organization. 

Genentech estimates that AI applications built using Snorkel Flow will increase diverse 
populations’ recruitment and reduce trial times, costs, and patient dropout rates. This in turn 
will dramatically reduce the drug development costs and increase the number of drugs in 
the pipeline leading to better evaluation of treatments, more cures, and treatments for society

1 day
Time to change label schema 
and relabel all training data

99%
Accuracy achieved for 
NER + entity linking

350K
Programmatically labeled 

clinical trial PDFs
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Accelerate AI with Snorkel 
Flow

It’s clear that adopting Snorkel’s data-centric approach can be instrumental to not only 
automating the labeling process while keeping human-in-the-loop but also to accelerating AI 
development.

But where do you start? Rather than dealing with annotation guides and contracts for 
crowdsourced labeling, put Snorkel Flow to use.

With Snorkel Flow, Fortune 500 organizations such as Chubb, BNY Mellon, Genentech, and 
more have built accurate and adaptable AI applications fast by putting the power of 
programmatic labeling to use.

Beyond realizing Snorkel’s data-centric approach, Snorkel Flow has many other features that 
elevate it from a training set or model creation tool to a complete enterprise platform for 
building AI applications. Some of those features include: 

• Application studio: Support for multiple data modalities (unstructured text, structured text, 
time series, etc.), problem types (NER, info extraction, multi-label classification, etc.), and 
custom application graphs combining multiple models, pre-/post-processors, and custom 
business logic

• Programmatic labeling IDE: no-code LF templates, auto-suggest and auto-tuning of LFs, 
interactive data visualization, automated management and versioning of LFs, etc.

• Training data management: advanced label model algorithms, automated parallelization, 
and hyperparameter selection, dataset versioning and comparisons, etc.

• Model training and serving: one-click model training or fine-tuning, hyperparameter 
search, endpoint creation for mode/application serving, export for serving at scale, etc.

• Deployment and security: REST API, monitoring services, and managed workers for job 
execution; encryption, authentication, and role-based access control (RBAC), managed 
SSO integration; support for hosted, hybrid, or on-premises deployments, etc.

To see Snorkel Flow in action: Request a demo.

 
To stay in touch, follow us on Twitter, LinkedIn, Youtube.

http://www.snorkel.ai/demo
https://twitter.com/snorkelai
https://www.linkedin.com/company/snorkel-ai
https://www.youtube.com/channel/UC6MQ2p8gZFYdTLEV8cysE6Q

