
DSAN 5300 Exam 2 Study Guide
DSAN 5300 Staff

Thursday, March 13, 2025

Part 1: Data-Splitting

Here the idea is that, we will be evaluating your understanding of different ways to split a dataset:
how the split is performed and why we might prefer a particular splitting approach in a particular
data-analysis scenario.

Train-Test Split ⇝ Generalizability

This is not a 5300 topic on its own—you learned it in DSAN 5000!—but is nonetheless important
to take note of here since its the basis for why we use Cross-Validation for model evaluation in
5300 (e.g., for tuning the hyperparameters of the models we look at each week).

It turns out to be an… oddly deep topic (hence why Jeff spent too long ranting about it in his
section during Week 4), but the key rationale for why we split our full dataset into a Training
Set and a Test Set boils down to the fact that our fundamental goal in statistical learning is
to…

• Find a prediction function ̂𝑓(𝑥) that…
• Does a good job predicting labels 𝑦𝑖 based on features 𝑥𝑖…
• For data (𝑥𝑖, 𝑦𝑖) that has not (yet) been observed

This contrasts with the more “naïve” goal of optimizing predictions of 𝑦𝑖 relative to already-observed
training datapoints.

So, under this framing of our goal, we set aside a small proportion (usually 20%) of the data as
our Test Set, which we do not look at while training the model, so that it can instead be used to
evaluate the model’s performance on unseen data.

1

Cross-Validation

Given that setup, then, the different versions of Cross-Validation all fall under the general rubric
of: generating “mini” training sets (sub-training sets) and test sets (validation sets), as smaller
subsets of the full training data, in order to estimate how well a given model might perform on
unseen data before we move to the final test-set-based evaluation once we have settled upon and
trained a final version of our model.

The key versions of Cross-Validation to know are:

• The Validation Set approach,
• Leave-One-Out Cross-Validation (LOOCV), and
• 𝐾-Fold Cross-Validation.

For example, you should understand the relationship between 𝐾-Fold CV and LOOCV: that
LOOCV is exactly just 𝐾-Fold CV with 𝐾 set to be equal to the number of datapoints 𝑛.

Part 2: Stepwise Model Selection

• Best Subset Selection
• Forward Stepwise Selection
• Backward Stepwise Selection

Here you can focus on, e.g., what are the relative strengths and weakness of these approaches?
In particular, you should understand how:

• Best Subset Selection is guaranteed to find an optimal subset of features, but is usually
prohibitively slow/inefficient, since it searches over all (𝑝

1) + (𝑝
2) + ⋯ + (𝑝

𝑝) possible subsets of
features, whereas

• Forward and Backward Stepwise Selection are computationally tractable but at the cost of
not being guaranteed to find an optimal subset of features.

Part 3: Regularization and 𝐿𝑝-Norms

Here the most helpful things to study are as follows:

Which particular norms are used in which particular regularization methods?

• Lasso penalizes model complexity via a penalty 𝜆 on ‖𝛽‖1, the 𝐿1 norm of 𝛽 = (𝛽0, 𝛽1, … , 𝛽𝑝)
• Ridge Regression penalizes model complexity via a penalty 𝜆 on ‖𝛽‖2

2, the squared 𝐿2 norm
of 𝛽

• Elastic Net Regularization “averages” these approaches, in a sense, by penalizing model com-
plexity via two penalty values:

– 𝜆1 as a penalty on ‖𝛽‖1 and $ 𝜆2 as a penalty on ‖𝛽‖2
2

2

What do the different 𝐿𝑝 constraints “look like”, in terms of how they constrain the
full space of possible model parameters 𝛽?

Here, as a helpful/fun way to prepare, is a practice problem for this part:

Assume we are estimating a regression with two parameters 𝛽1 and 𝛽2, both real numbers so that
the space of estimates is ℝ2 (we can imagine 𝛽1 as the 𝑥-axis in this space and 𝛽2 as the 𝑦-axis). Each
𝐿𝑝-norm induces a “unit circle” within this space, defined to be the set of points 𝛽 = (𝛽1, 𝛽2)
for which ‖𝛽‖𝑝 = 1.

Since the 𝐿2 norm corresponds to “standard” Euclidean distance, for example, the shape of the
unit circle it induces is the shape we typically already call “the unit circle” in geometry:

Figure 1: From this slide

The 𝐿1 norm, however, induces a different unit circle: the set of all points exactly 1 unit away from
the origin in 𝐿1 space looks like a diamond:

Figure 2: From this slide

Practice Problem 3A:

3

https://jjacobs.me/dsan5300-01/w06/slides.html#/different-norms-leftrightarrow-different-distances-from-vecmathbf0
https://jjacobs.me/dsan5300-01/w06/slides.html#/different-norms-leftrightarrow-different-distances-from-vecmathbf0

• What do the unit circles look like for values of 𝑝 where 0 < 𝑝 < 1? (This was discussed in
the Google Space, but it can be helpful to think of why the unit circle looks this way)

• The unit disks (the spaces enclosed by the unit circles) in 𝐿1 and 𝐿2 space are convex,
meaning that if you pick any two points 𝛽𝐴 and 𝛽𝐵 within the space and draw a line between
them, any point along this line is also within the space.1 Are the unit circles produced when
0 < 𝑝 < 1 also convex?

Practice Problem 3B:

The definition of the 𝐿𝑝 norm,

‖𝛽‖𝑝 = (
𝐽

∑
𝑗=1

|𝛽𝑗|𝑝)
1
𝑝

,

works fine for deriving (e.g.) the 𝐿2, 𝐿1, and 𝐿2/3 norms. But there is one additional widely-used
norm, the 𝐿∞ norm, that we can’t exactly derive by “plugging in” ∞, but can easily derive by
taking the limit as 𝑝 → ∞:

‖𝛽‖∞
def= lim

𝑝→∞
‖𝛽‖𝑝

• Show (or, just, try your best to show! Or look up!) that this limit can be evaluated to arrive
at the closed-form expression ‖𝛽‖∞ = max{𝛽0, 𝛽1, … , 𝛽𝐽}

• More importantly: what does the unit circle induced by this norm look like? Try to draw
it on an 𝑥𝑦-plane, the same way you would draw a unit circle or the diamond induced by the
𝐿1 norm.

Part 4: Basis Functions

In Week 7 we introduced the notion of a set of basis functions {𝑏0(𝑋), 𝑏1(𝑋), … , 𝑏𝐷(𝑋)} as
a method for writing different types of regressions (e.g., linear regression, polynomial regression,
piecewise regression, and regression splines) in a single form.

A degree-𝑑 polynomial regression, for example, can be thought of as a simple linear regression
on 𝑑 basis functions {𝑏0(𝑋) = 1, 𝑏1(𝑋) = 𝑋, 𝑏2(𝑋) = 𝑋2, … , 𝑏𝑑(𝑋) = 𝑋𝑑}, so that estimating
parameters 𝛽0 through 𝛽𝑑 gives us

𝑌 = 𝛽0𝑏0(𝑋) + 𝛽1𝑏1(𝑋) + ⋯ + 𝛽𝑑𝑏𝑑(𝑋) = 𝛽0 + 𝛽1𝑋 + ⋯ + 𝛽𝑑𝑋𝑑,

the standard form for a degree-𝑑 polynomial regression.

1We haven’t talked about convex optimization in this class, but it turns out to be a very important feature in terms
of whether or not we can efficiently optimize a given function within a given space…

4

https://stanford.edu/~boyd/cvxbook/

For this portion, if we provide you with a “true” Data-Generating Process 𝑓(𝑥), you should be
able to identify whether or not performing regression on a particular set of basis functions ℬ =
{𝑏0(𝑋), 𝑏1(𝑋), …} would allow you to learn the true DGP 𝑓(𝑥).
For example, if the true DGP underlying a given dataset was

𝑓(𝑥) = 2𝑥,

but the set of basis functions used for a regression was ℬ = {𝑥, 𝑥2}, then this regression would not
be able to learn the true DGP, since there are no numeric constants 𝛽0, 𝛽1, and 𝛽2 that it could
learn which would produce

2𝑥 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2.

However, if the true DGP was

𝑓(𝑥) = log2(𝑥) + 3,

and we employed the basis functions ℬ′ = {𝑥, 𝑥2, ln(𝑥)}, we could learn the true DGP using
regression, since learning the numeric constants ̂𝛽0 = 3, ̂𝛽1 = 0, ̂𝛽2 = 0, and ̂𝛽3 = 1

ln(2) would
recover 𝑓(𝑥):

log2(𝑥) + 3 = ̂𝛽0 + ̂𝛽1𝑥 + ̂𝛽2𝑥2 + ̂𝛽3 ln(𝑥) = 3 + 0 + 0 + ln(𝑥)
ln(2) �

Part 5: Splines

The basic approach to data modeling underlying the use of splines is as follows:

1. “Chop” the feature space (the domain of x) at 𝐾 points Ξ = {𝜉1, 𝜉2, … , 𝜉𝑘}2, called “knot
points”, thus producing 𝐾 + 1 separate pieces of the original domain of x

2. Model each of these 𝐾 + 1 pieces individually, using tools from Weeks 1-6
3. Join the 𝐾 + 1 resulting prediction functions together in a smooth way

Here the term “smooth” in Step 3 is typically (99.9% of the time) operationalized to mean that
the final joined-together prediction function should have a well-defined second derivative at each
knot point 𝜉𝑘. This is why, when a data scientist says “spline” in general, they usually are referring
specifially to cubic splines:

2The symbol Ξ is the capitalized form, and 𝜉 the lowercased form, of the Greek letter “xi”, pronounced like “ksy”—
like saying “sigh” immediately after a quick “k” sound.

5

Table 1: First and second derivatives of polynomials evaluated at an arbitrary point 𝜉𝑘

Degree Polynomial Derivatives at 𝑥 = 𝜉𝑘

0 𝑓(𝑥) = 𝑐0𝑥0 = 𝑐0 𝑓 ′(𝜉𝑘) = 0𝑓″(𝜉𝑘) = 0
1 𝑓(𝜉𝑘) = 𝑐0𝑥0 + 𝑐1𝑥1 = 𝑐0 + 𝑐1𝑥 𝑓 ′(𝜉𝑘) = 𝑐1𝑓″(𝜉𝑘) = 0
2 𝑓(𝑥) = 𝑐0𝑥0 + 𝑐1𝑥1 + 𝑐2𝑥2 𝑓 ′(𝜉𝑘) = 𝑐1 +2𝑐2𝜉𝑘𝑓″(𝜉𝑘) = 2𝑐2
3 𝑓(𝑥) = 𝑐0𝑥0+𝑐1𝑥1+𝑐2𝑥2+𝑐3𝑥3 𝑓 ′(𝜉𝑘) = 𝑐1 + 2𝑐2𝜉𝑘 +

3𝑐3𝜉2
𝑘𝑓″(𝜉𝑘) = 2𝑐2 + 6𝑐3𝜉𝑘

From this table we can see how degree-3 cubic polynomials are the “simplest” (in terms of lowest
degree) polynomials for which we could learn coefficients 𝑐0 through 𝑐3 that would enable joining
different pieces together to have a well-defined second derivative at all knot points 𝜉𝑘

3. And, in
fact, we don’t even need to learn 4 separate coefficients 𝑐0, 𝑐1, 𝑐2, and 𝑐3 to achieve this: by looking
at the form of 𝑓″(𝑥) in the final row of Table 1, we see that by just learning a coefficient 𝑐3 on the
cubic term (𝑥3) at each knot point, we can ensure that the regression solution 𝑐3 (for example, the
OLS estimate ̂𝛽𝑗 for a term 𝛽𝑗𝜉3

𝑘 on the RHS of a regression model)

This tells us (for reasons that we talked about in more depth during lecture) that we can join our
𝐾 + 1 separately-modeled “pieces” together in a smooth way by adding the truncated power
basis functions

ℬTP = {(𝑥 − 𝜉1)3
+, (𝑥 − 𝜉2)3

+, … , (𝑥 − 𝜉𝐾)3
+}

to any existing regression model with existing basis functions ℬ, where the + in the subscript after
the parentheses denotes the truncated power function:

(𝑥 − 𝜉)3
+

def= {0 if 𝑥 − 𝜉 ≤ 0
(𝑥 − 𝜉)3 if 𝑥 − 𝜉 > 0

Thus, for example, if we were fitting a regression model using one of the example bases given in
the previous part:

ℬ′ = {𝑥, 𝑥2, ln(𝑥)},

but decided that in fact we want to fit this model separately for datapoints with 𝑥𝑖 ≤ 100∘C
and 𝑥𝑖 > 100∘C, we can “automatically” achieve this by performing a new regression with basis
functions

3In a Calculus class, we learn (as basically a helpful rule-of-thumb definition) that a function 𝑓(𝑥) has a “well-
defined” second derivative at a given point 𝜉 if lim𝑥→𝜉+ 𝑓″(𝑥) = lim𝑥→𝜉− 𝑓″(𝑥), i.e., if the second derivative has
the same value approaching 𝜉 from below and approaching 𝜉 from above. If we go on to take a Real Analysis class
this picture gets complicated a bit to arrive at a fully-workable definition (by bringing in infima and suprema),
but the intuition from Calculus class should be fine for this class!

6

https://en.wikipedia.org/wiki/Truncated_power_function
https://en.wikipedia.org/wiki/Infimum_and_supremum

ℬ″ = {𝑥, 𝑥2, ln(𝑥), (𝑥 − 100)3
+}.

This “forces” the regression to now estimate some parameter 𝛽4 as a coefficient for (𝑥 − 100)3
+,

ensuring that resulting prediction function joins the two “pieces” at 𝑥 = 100∘C in a smooth way.

Given these pieces, some takeaways for yall in terms of what you can study is as follows:

How should the knot points 𝜉𝑘 themselves be chosen?

• If we have a pre-existing reason (with respect to our theory or hypothesis that we’re bringing
to the data) to expect different behavior in different regions of the domain of some feature
x, we can opt to “manually” place knot points to separate the full domain into these regions

• In the above example, 𝜉1 = 100∘C may be chosen because we’re studying water, which (our
theory tells us) undergoes a phase change at that temperature.

• In the absence of this type of pre-existing reason, however, we more-commonly choose both
the number of knot points 𝐾 and their locations {𝜉1, … , 𝜉𝑘} via Cross-Validation

How exactly does adding the truncated power function (𝑥−𝜉𝑘)3
+ as a new basis function

allow us to “split” the original regression into pieces (constrained to join together
smoothly)?

• The parenthetical part we already discussed above (that smoothness is “enforced” by the 3
in the exponent), but the splitting is a separate “feature” of these truncated power bases.

• For intuition, rather than thinking of these as separate/new features, it can help to think of
them as “slope modifiers”: if our prediction function is

̂𝑦𝑖 = ̂𝛽0 + ̂𝛽1𝑥𝑖 + ̂𝛽2(𝑥𝑖 − 𝜉1)3
+,

then the slope of this prediction function will be ̂𝛽1 up until the point 𝑥 = 𝜉1, after which the
slope will become ̂𝛽1 + ̂𝛽2.

7

https://jjacobs.me/dsan5300-01/w07/slides.html#/truncated-power-basis-relu-basis

	Part 1: Data-Splitting
	Train-Test Split \leadsto Generalizability
	Cross-Validation

	Part 2: Stepwise Model Selection
	Part 3: Regularization and L^p-Norms
	Part 4: Basis Functions
	Part 5: Splines

